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Associative memory retrieval induced by fluctuations in a pulsed neural network

Takashi Kanamaru and Yoichi Okabe
RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan

~Received 10 January 2000!

An associative memory retrieval in a pulsed neural network composed of the FitzHugh-Nagumo neurons is
investigated. The memory is represented in the spatio-temporal firing pattern of the neurons, and the memory
retrieval is accomplished using the fluctuations in the system. The storage capacity of the network is investi-
gated numerically. It is demonstrated that this pulsed neural network is capable of an alternate retrieval of two
patterns.

PACS number~s!: 87.10.1e, 05.45.2a, 84.35.1i, 07.05.Mh
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I. INTRODUCTION

Recently, there has been considerable interest in ass
tive memory of neural networks composed of model neur
which change their dynamical states temporally, such as
otic neurons, oscillator neurons, or spiking neurons@1–14#.
These networks are not only of theoretical interest, but a
may have a lot to do with the problem of information codi
in the brain@15#.

Numerous authors have investigated coupled phase o
lators @3–9#, which are the general reduced model of t
coupled limit-cycle oscillators. In this case, all the neuro
oscillate with almost the same period, and the memory
represented in the relative phase differences of oscillators
the neurons can store analog-valued patterns. This mode
an advantage in that the usual techniques for theore
analysis of associative memory@16,17# are applicable.

On the other hand, neural networks composed of spik
neurons also show the properties of associative mem
@11–13#. In those systems, the following models are oft
used as spiking neurons: the Hodgkin-Huxley equati
which describes the dynamics of squid giant axons;
FitzHugh-Nagumo equation, which is the reduced mode
the Hodgkin-Huxley equation; and the leaky integrate-a
fire model, which has an internal state described by a lin
differential equation and a spiking mechanism with a thre
old. The couplings among those neurons are accompa
with a time delay which models the time for a pulse
propagate on the axon from the presynaptic neuron to
postsynaptic neuron, and the memory is represented in
spatio-temporal firing pattern of the neurons.

Meanwhile, the physiological environment where neuro
operate is thought to be highly noisy@18,19#, so the effect of
the fluctuations may not be neglected. Generally, stocha
resonance~SR! is a well-known phenomenon in which
weak input signal is enhanced by its background fluctuatio
SR is observed in many nonlinear systems@20–22#. Particu-
larly, SR in a single neuron has been investigated by num
ous researchers both experimentally@23,24# and theoretically
@25–31#, and it is proposed that the biological sensory s
tem may utilize SR to improve sensitivity to an extern
input signal. Recently, the effect of SR in spatially extend
systems, or neural networks, has been investigated, and s
new features have been reported@32–34#. Concerning SR in
the coupled FitzHugh-Nagumo equation, we proposed
PRE 621063-651X/2000/62~2!/2629~7!/$15.00
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the background fluctuations may play a functional role like
parameter of the dynamical system@34#.

In the present paper, the associative memory compose
FitzHugh-Nagumo neurons with the fluctuations is treat
and SR-like effects in this system are considered. In Sec
a coupled FitzHugh-Nagumo equation and some quant
are defined. In Sec. III, the results of numerical simulatio
are presented. We consider memory retrieval after add
fluctuations into the system and examine its dependence
the fluctuation intensity. We observe an SR-like pheno
enon. The basin of the attraction and the storage capacit
the system are also investigated numerically. In Sec. IV, t
oretical analyses for the fluctuation-induced memory
trieval are presented. In Sec. V, the simultaneous retrieva
two patterns is observed as the alternate firings of the
ticular neurons. Conclusions and discussions are given in
final section.

II. ASSOCIATIVE MEMORY COMPOSED OF SPIKING
NEURONS

In the following, as a model of associative memory, w
treat a coupled FitzHugh-Nagumo~FN! equation written as

tu̇i52v i1ui2ui
3/31I i~ t !1h i~ t !

1(
j 51

N

Ji j @uj~ t2dp!2ueq#, ~1!

v̇ i5ui2bv i1g, ~2!

^h i~ t !h j~ t8!&5Dd i j d~ t2t8!, ~3!

whereb50.8, g50.7, t50.1, ueq521.2, dp53, ui andv i
denote the internal states of thei th neuron,I i(t) is the ex-
ternal input, andh i(t) is the Gaussian white noise, whic
represents the fluctuation in the system. Note that a sin
FN neuron shows the characteristic of the spiking neur
namely, it has a stable rest state, and with an appropr
amount of disturbance it generates a pulse with a charac
istic magnitude of height and width,ueq is the equilibrium
value of ui for I i(t)50, ni(t)50, and Ji j 50 (i , j
51,2,...,N), anddp is the uniform propagational time delay
2629 ©2000 The American Physical Society
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2630 PRE 62TAKASHI KANAMARU AND YOICHI OKABE
Let us make the aboveN neurons storep random patterns
j i

m ( i 51,2,...,N, m51,2,...,p!, generated according to th
probability density function

P~j i
m!5~12a!d~j i

m!1ad~j i
m21!, ~4!

whered(x) denotes the delta function anda (0<a<1) is
the average ofj i

m . Following Yoshioka and Shiino@13#, the
connection coefficientsJi j are defined as

Ji j 5
w

Na~12a! (
m51

p

j i
m~j j

m2a!, ~5!

where the parameterw scales the strength ofJi j and is fixed
at w50.15 in the following. Note that the matrixJi j

}Smj i
m(j j

m2a) is used instead of the usualJi j }Sm(j i
m

2a)(j j
m2a) so as not to give negative input to the neuro

which store 0’s, because the FN neuron can fire even w
the negative input due to the rebound effect@35#.

The external inputI i(t) is defined as

I i~ t !5IxiQ~ t ! ~xiP$0,1%!, ~6!

whereI is the strength of the external input,xi is the binary
factor which determines whether the input is injected to
i th neuron or not, andQ(t) is Heaviside’s step function
which takes 1 fort>0 and otherwise takes 0. In the follow
ing, I is fixed atI 50.1, which is so small that each neuro
cannot fire without the fluctuationh i(t). Using the binary
factor xi , the input overlapmin

m , which measures the corre
lation between the patternjm5(j1

m ,j2
m ,...,jN

m) and the ex-
ternal inputI (t)5„I 1(t),I 2(t),...,I N(t)…, is defined as

min
m5

1

Na~12a! (i 51

N

~j i
m2a!~xi2a!. ~7!

III. FLUCTUATION-INDUCED MEMORY RETRIEVAL

Following the above configurations, numerical simu
tions are carried out forN5200,p53, anda50.5. Without
loss of generality, the patternj1 can be defined as

j i
15H 1, 1< i<100

0 otherwise
~8!

and the patternsj2 andj3 are determined randomly follow
ing the probability density function~4!. The external input is
derived by determining the binary factorsxi randomly so that
the input overlapmin

1 with the patternj1 takes 0.5. A typical
time series ofu1(t) for the fluctuation intensityD50.001 is
shown in Fig. 1, where the fluctuation aroundueq and the two
firings are observed. To measure the correlation between
patternjm and the time seriesui(t) ( i 51,2,...,N), ui(t) is
transformed into the binary seriesyi(t)P$0,1%. First, let us
define the firing time of thei th neuron as the time whenui(t)
exceeds an arbitrary thresholdu, and we setu50 in the
following. Then the time seriesui(t) is transformed into the
binary series
s
th

e

-

he

yi~ t !5H 1, t,t i
f1d

0 otherwise,
~9!

wheret i
f is the latest firing time of thei th neuron at timet,

the parameterd is set close to the characteristic width of th
output pulse, andd54 is used in the following. Then the
output overlapmout

m between the patternjm and the binary
seriesy5„y1(t),y2(t),...,yN(t)… is defined as

mout
m 5

1

Na~12a! (i 51

N

~j i
m2a!~yi2a!. ~10!

The firing times of all the neurons for the fluctuation i
tensity D50.001 are shown in Fig. 2~a!, and it is observed
that all the neurons are firing randomly. The output over
mout

1 with the patternj1 obtained from the time series in Fig

FIG. 1. A typical time series ofu1(t) for N5200, p53, a
50.5, andD50.001. The fluctuation aroundueq and the two firings
are observed.

FIG. 2. The result of numerical simulation.~a! The firing times
of all the neurons and~b! the output overlapmout

1 with the pattern
j1, for N5200, p53, a50.5, andD50.001. All the neurons are
firing randomly, so the retrieval of the patternj1 fails.
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2~a! is shown in Fig. 2~b!. It is observed thatmout
1 fluctuates

around 0, so it can be concluded that the retrieval of
patternj1 fails.

The firing times of all the neurons forD50.002 are
shown in Fig. 3~a!. It is observed that all the neurons seem
fire randomly at smallt, but att;40 the neurons which stor
1’s for the patternj1 start to fire periodically and synchro
nously. And in Fig. 3~b!, the output overlapmout

1 increases to
about 0.8 att;40, so in this case the retrieval of the patte
j1 is successful.

The results of the simulation forD50.004 are shown in
Fig. 4. The periodic and synchronous firings are obser
again, but the neurons which store 0’s for patternj1 also fire
with high firing rates due to the large fluctuation intensity,
the output overlap is lower than the case ofD50.002.

In Fig. 5, the output overlapmout
1 at a sufficiently larget is

plotted against the fluctuation intensityD for the input over-
lap min

1 50.8, 0.6, and 0.1. The other parameters are ident
with the previous cases. Formin

1 50.8 and 0.6, the outpu
overlap mout

1 increases with the increase of the fluctuati
intensityD, and it decreases with the increase ofD over the
optimal intensityD0;0.0015. This phenomenon is similar
so-called stochastic resonance, where a weak input sign
enhanced by its background fluctuation and observed
many nonlinear systems@20–22#. For min

1 50.1, the retrieval
of patternj1 fails for any value ofD.

For the fixed fluctuation intensityD50.002, the numeri-
cally obtained basin of attraction is shown as a function
the loading ratea5p/N in Fig. 6. For each loading ratea,
two points are plotted, namely, the upper is the equilibri
value of the output overlapmout

1 and the lower is the mini-
mum input overlapmin

1 which gives the successful memo
retrieval. Fora,0.02, the standard deviations shown by t
error bars are relatively small, but fora>0.02, they take

FIG. 3. The result of numerical simulation.~a! The firing times
of all the neurons and~b! the output overlapmout

1 with the pattern
j1, for N5200, p53, a50.5, andD50.002. The retrieval of the
patternj1 is successful.
e

d

al

l is
in

f

larger values, that is, the memory-retrieval states are de
bilized. So it can be concluded that the storage capacityac is
about 0.02. For further discussions, theoretical analyse
the associative memory@16,17# are needed.

IV. THEORETICAL ANALYSIS OF FLUCTUATION-
INDUCED MEMORY RETRIEVAL

A. Fluctuation-induced memory retrieval

In this section, we give a qualitative explanation for t
fluctuation-induced memory retrieval. In the following, th
system withp51 is considered for simplicity. Let us defin
the set of indices of neurons which store 0’s in the patt
jm5(j1

m ,j2
m ,...,jN

m) asGm(0), and the set ofindices of neu-
rons which store 1’s in the patternjm asGm(1). Theinput
Ki injected into thei th neuron is written as

FIG. 4. The result of numerical simulation.~a! The firing times
of all the neurons and~b! the output overlapmout

1 with the pattern
j1, for N5200, p53, a50.5, andD50.004. The neurons which
store 0’s for patternj1 fire with high firing rates due to the larg
fluctuation intensity, so the output overlap is lower than the cas
D50.002.

FIG. 5. The output overlapmout
1 against the fluctuation intensity

D for min
1 50.8, 0.6, and 0.1 withN5200, p53, anda50.5. Sto-

chastic resonancelike phenomenon is observed formin
1 50.8 and 0.6.
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Ki5h i for i PG1~0!, ~11!

Ki5
w

Na~12a! (j 51

N

~j j
12a!~uj2ueq!1I 1h i , ~12!

5
w

Na~12a! S (
j PG1~0!

~j j
12a!~uj2ueq!1 (

j PG1~1!

~j j
12a!

3~uj2ueq!D 1I 1h i , ~13!

5wS 2
1

N~12a! (
j PG1~0!

~uj2ueq!1
1

Na (
j PG1~1!

~uj2ueq!D
1I 1h i , ~14!

5w~2^uj2ueq& j PG1~0!1^uj2ueq& j PG1~1!!1I 1h i

for i PG1~1!, ~15!

where ^ & j PA denotes the ensemble average over the seA.
Note that the external inputI (t) is injected only to the neu
rons in G1(1) for simplicity. Because noises for differen
neurons are statistically independent, the neurons inG1(0)
fire randomly and independently. On the other hand, the n
rons inG1(1) have the common inputw^uj2ueq& j PG1(1) , so
their firings may be correlative with each other. In the fo
lowing, we treat this dynamics.

Let us consider an ensemble ofN neurons with the uni-
form coupling termw^uj (t2dp)2ueq& j and the external in-
put I 1h i , namely, Eqs.~1! and ~2! with Ji j 5w/N and
I i(t)5I . Note that this model approximates the dynamics
neurons inG1(1), andthat the term̂ uj2ueq& j PG1(0) in Eq.
~15! is neglected for simplicity. Then let us consider t
number of neurons which fire in the narrow time interv
@ t,t1D# and denote it byNzn . If an output pulse of the FN
neuron has widthd and heightM, the perturbation with width
;d and height;wMzn is injected to all the neurons with
the delaydp . Let us denote the number of neurons which fi
with this perturbation in the time interval@ t1dp ,t1dp
1D# by Nzn11 , and assume the relationzn115g(zn). If the
FN neuron acts like a threshold device with the thresholdI 0 ,
g(zn) for noise intensityD50 is a step function which take
1 for wMzn1I>I 0 and takes 0 otherwise. It is difficult to

FIG. 6. The basin of attraction forN5200, D50.002, anda
50.5. The error bar denotes the standard deviation for ten sam
The storage capacity is estimated to be about 0.02.
u-

f

l

deriveg(zn) for DÞ0, but it is expected to be a monoton
cally increasing function ofzn .

Numerically obtainedg(zn) for D50.0005, 0.001, and
0.0012 with N5100 and I 50.1 is plotted in Fig. 7. The
width D of the time interval is set at the same size withd of
the output pulse. It is observed that the number of inters
ing points ofy5g(z) with y5z is three forD,D0;0.001
and one forD.D0 , the intersecting pointz;1 is always
stable for anyD, and the other intersecting points are gen
ated by a saddle-node bifurcation atD5D0 . The schematic
diagram is shown in Fig. 8. Thus, forD.D0 , any zn con-
verges to the stable fixed pointzn;1, which means that al
the neurons fire synchronously and periodically with the
riod dp for D.D0 .

B. The dependence ofmout on D

In this section, the dependence ofmout on D is investi-
gated forD.D0 . Assume that the neurons inG1(1) fire
synchronously and periodically with the perioddp and that
the neurons inG1(0) are firing randomly with firing rate
depending onD as r G05r 0 exp(2C/D), wherer 0 andC are
constants. Note that this firing rate is the inverse of the fi
passage time for a particle in a double-well potential to cr
the potential barrier@36#, and is introduced only for simplic-
ity.

The distribution of the ratiok of the neurons inG0(0)
which fire in a time interval of widthd and its averagêk& are
written as

es.
FIG. 7. Numerically obtainedg(zn) for D50.0005, 0.001, and

0.0012 withN5100 andI 50.1. A saddle-node bifurcation atD
;0.001 is observed.

FIG. 8. Schematic diagram of bifurcation ofg(z).
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P~k!5N~12a!CN~12a!k@12exp~2r G0d!#N~12a!k

3@exp~2r G0d!#N~12a!~12k!, ~16!

^k&512exp~2r G0d!. ~17!

With ^k&, mout is approximately given by

mout
1 5

1

Na~12a! (i
~j i

12a!~yi2a!, ~18!

5
1

Na~12a!
@~12a!~12a!Na1~2a!~12a!N~12a!^k&

1~2a!~2a!N~12a!~12^k&!#, ~19!

5expF2r 0d expS 2
C

D D G . ~20!

Note that Eq.~20! decreases monotonically with the increa
of D. This gives the quantitative description of the decre
of mout for D>D0 .

V. ALTERNATE RETRIEVAL OF TWO PATTERNS

In our network, the memory is represented by the s
chronized periodic firings of the neurons which store 1’s, a
this period is determined by the propagational time delaydp .
So the system has a large degree of freedom along the
axis for the largedp , that is, during the time between th
firings by one pattern, the system can retrieve other patte
in other words, this system can process some ‘‘tasks’’ sim
taneously.

To see this ability, numerical simulations are perform
for N5200,p53, a50.5, anddp56.5. Note that the propa
gational time delaydp is about twice as long asdp53 used
in the above sections. For simplicity, the patternsj1 andj2

are defined as

j i
15H 1, 1< i<100

0 otherwise,
~21!

j i
25H 1, 51< i<150

0 otherwise,
~22!

respectively, and the patternj3 is determined randomly fol-
lowing the probability density function~4!. The external in-
put I (t) is defined so that the binary factorxi suffices,

xi5H 1, 51< i<100

0 otherwise.
~23!

Note that both input overlapsmout
1 andmout

2 take 0.5.
For the fluctuation intensityD50.001, the firing times of

all the neurons and the output overlapsmout
1 and mout

2 are
plotted in Figs. 9~a! and 9~b!, respectively. It is observed tha
the retrievals of both patternj1 and patternj2 fail with this
fluctuation intensity.

The firing times of all the neurons for the fluctuation i
tensity D50.002 are plotted in Fig. 10~a!. It is shown that
the two patternsj1 andj2 are retrieved alternatively, accom
e

-
d

e

s,
l-

d

panied by the time differencedp/2. The output overlapsmout
1

and mout
2 derived from the data in Fig. 10~a! are shown in

Fig. 10~b!. The alternate retrieval of two patterns is observ
as the antiphase oscillations of two output overlaps.

The results of the numerical simulation forD50.004 are
shown in Fig. 11. In Fig. 11~a!, it is observed that all the
neurons are firing with high firing rates, so the retrievals
both patternj1 and patternj2 fail as in Fig. 11~b!.

From the above results, it can be concluded that our s
tem has an ability to retrieve two patterns simultaneously

FIG. 9. The results of numerical simulation.~a! The firing times
and ~b! the output overlaps, forN5200, p53, a50.5, D50.001,
anddp56.5. The retrievals of both patternj1 and patternj2 fail.

FIG. 10. The results of numerical simulation.~a! The firing
times and~b! the output overlaps, forN5200, p53, a50.5, D
50.002, anddp56.5. The alternate retrieval of two patterns is o
served as the antiphase oscillations of two output overlaps.
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the alternate firings of particular neurons, and the fluctua
intensityD plays a significant role to realize this dynamic

VI. CONCLUSIONS AND DISCUSSION

The associative memory in a pulsed neural network co
posed of FitzHugh-Nagumo neurons with propagational ti
delay is investigated. In this network, the memory is rep
sented by the synchronous periodic firings of the particu
neurons. It is found that the memory retrieval in this syst
is achieved by adding fluctuations, and there exists an o
mal fluctuation intensity for memory retrieval. This phenom

FIG. 11. The results of numerical simulation.~a! The firing
times and~b! the output overlaps, forN5200, p53, a50.5, D
50.004, anddp56.5. All the neurons are firing with high firing
rates, so the retrievals of both patternj1 and patternj2 fail.
m

n

-
e
-
r

ti-
-

enon is similar to so-called stochastic resonance~SR!, where
the weak input signal is enhanced by its background fluct
tions. Though there is no time-dependent input in our mod
the mechanism of associative memory is driven and
hanced by its background fluctuations. The basin of attr
tion of this system is investigated numerically, and its st
age capacity is found to beac;0.02. Note that this storag
capacity is smaller than those of previous models, for
ample 0.138 for the Hopfield model@37# and 0.038 for the
coupled phase oscillators@38#. But our network has an abil
ity that the previous models do not have, that is, an ability
retrieve two patterns as the alternate firings of the particu
neurons. While such dynamics utilizing the degree of fre
dom along the time axis is proposed by Wanget al. for the
network of bursting neurons@14#, our model has the proper
ties that the component of memory is the single pulse of e
neuron, and that fluctuation in the system is indispensab

As for the fluctuations in the neural system, SR in a sin
neuron is often investigated, and it is proposed that the s
sory system may utilize SR in order to improve the sensi
ity to the external input. Our results show that fluctuatio
can play a more functional role in higher-order dynamics
the brain, such as memory retrieval in the associat
memory. Collinset al. propose that regulation of the fluctua
tion intensity is not required for a network of large numbe
of neurons@33#. In our dynamics, however, regulation of th
fluctuation intensity is required for optimal intensity~see Fig.
5!. It might be difficult to regulate the fluctuation intensity
the fluctuation in our model is considered to be the therm
noise in the neural system, but that might be naturally p
formed if the fluctuation in our system represents the sum
enormous pulses from the presynaptic neurons@29–31#. In
such a case, the dynamics of the system might be contro
by its background fluctuations@34#.
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