PHYSICAL REVIEW E VOLUME 62, NUMBER 2 AUGUST 2000

Associative memory retrieval induced by fluctuations in a pulsed neural network

Takashi Kanamaru and Yoichi Okabe
RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
(Received 10 January 2000

An associative memory retrieval in a pulsed neural network composed of the FitzHugh-Nagumo neurons is
investigated. The memory is represented in the spatio-temporal firing pattern of the neurons, and the memory
retrieval is accomplished using the fluctuations in the system. The storage capacity of the network is investi-
gated numerically. It is demonstrated that this pulsed neural network is capable of an alternate retrieval of two
patterns.

PACS numbdps): 87.10+e, 05.45-a, 84.35+i, 07.05.Mh

[. INTRODUCTION the background fluctuations may play a functional role like a
parameter of the dynamical systeB#].

Recently, there has been considerable interest in associa- In the present paper, the associative memory composed of
tive memory of neural networks composed of model neurongitzHugh-Nagumo neurons with the fluctuations is treated,
which change their dynamical states temporally, such as ch@nd SR-like effects in this system are considered. In Sec. I,
otic neurons, oscillator neurons, or spiking neurphs14). @ coupled FitzHugh-Nagumo equation and some quantities
These networks are not on|y of theoretical interest, but als@fe defined. In Sec. I, the results of numerical simulations
may have a lot to do with the problem of information coding are presented. We consider memory retrieval after adding
in the brain[15]. fluctuations into the system and examine its dependence on

Numerous authors have investigated coupled phase oscfibe fluctuation intensity. We observe an SR-like phenom-
lators [3—9], which are the general reduced model of the€non. The basin of the attraction and the storage capacity of
coupled limit-cycle oscillators. In this case, all the neuronsthe system are also investigated numerically. In Sec. IV, the-
oscillate with almost the same period, and the memory i®retical analyses for the fluctuation-induced memory re-
represented in the relative phase differences of oscillators, dfeval are presented. In Sec. V, the simultaneous retrieval of
the neurons can store analog-valued patterns. This model hB¥0 patterns is observed as the alternate firings of the par-
an advantage in that the usual techniques for theoreticdicular neurons. Conclusions and discussions are given in the
analysis of associative memof¥6,17 are applicable. final section.

On the other hand, neural networks composed of spiking
neurons also show the properties o.f associative memory | AssocIATIVE MEMORY COMPOSED OF SPIKING
[11-13. In those systems, the following models are often NEURONS
used as spiking neurons: the Hodgkin-Huxley equation,
which describes the dynamics of squid giant axons; the In the following, as a model of associative memory, we
FitzHugh-Nagumo equation, which is the reduced model ofreat a coupled FitzHugh-Nagun{BN) equation written as
the Hodgkin-Huxley equation; and the leaky integrate-and-
fire modgl, which has an inte.rn.al state despribed by a linear U= — v+ U — U3/3+ 1, () + 7;(1)
differential equation and a spiking mechanism with a thresh-
old. The couplings among those neurons are accompanied N
with a time delay which models the time for a pulse to + 2, Jijluj(t—dy) — uegl, (1)
propagate on the axon from the presynaptic neuron to the =1
postsynaptic neuron, and the memory is represented in the
spatio-temporal firing pattern of the neurons. vi=u;—Bvitvy, (2

Meanwhile, the physiological environment where neurons
operate is thought to be highly noig¥8,19, so the effect of L ,
thpe fluctuations may not be neglected. Generally, stochastic (m(t)n;(t"))=Dg;s(t—t"), ()
resonancgSR) is a well-known phenomenon in which a
weak input signal is enhanced by its background fluctuationsvhere =0.8, y=0.7, 7=0.1, Ugq= — 1.2,d,= 3, u; andv;

SR is observed in many nonlinear systgi#8—22. Particu- denote the internal states of thia neuron,l;(t) is the ex-
larly, SR in a single neuron has been investigated by numeiternal input, andz;(t) is the Gaussian white noise, which
ous researchers both experimentdfi$,24] and theoretically represents the fluctuation in the system. Note that a single
[25-31], and it is proposed that the biological sensory sysFN neuron shows the characteristic of the spiking neuron,
tem may utilize SR to improve sensitivity to an external namely, it has a stable rest state, and with an appropriate
input signal. Recently, the effect of SR in spatially extendedamount of disturbance it generates a pulse with a character-
systems, or neural networks, has been investigated, and soriséic magnitude of height and widthyg, is the equilibrium
new features have been repor{@2—-34. Concerning SR in value of u; for Ii(t)=0, ni(t)=0, and J;=0 (i,j

the coupled FitzHugh-Nagumo equation, we proposed that1,2,...N), andd, is the uniform propagational time delay.
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Let us make the abovd neurons stor@ random patterns 2
& (i=1,2,..N, n=1,2,...p), generated according to the

probability density function 1
P(&)=(1-a)d(&) +ad(g~1), (4) ul’

where §(x) denotes the delta function ard(0<a<1) is 5 AMWW

the average of/. Following Yoshioka and Shiinfl3], the 2

connection coefficienty;; are defined as

P time
Jij= Na(l a) Z F(&-a, ®)

FIG. 1. A typical time series ofiy(t) for N=200, p=3, a

o =0.5, andD =0.001. The fluctuation aroung, and the two firings
where the parametev scales the strength df; and is fixed  4r¢ gbserved.

at w=0.15 in the following. Note that the matrix;;

o3, &€ —a) is used instead of the usudl =3 (& f
1% J ) . ’ J M 1, t<ti +d
—a)(&'—a) so as not to give negative input to the neurons yi(t)= _ 9
which store 0's, because the FN neuron can fire even with 0 otherwise,
the negative input due to the rebound effE2%].
The external input;(t) is defined as wheret! is the latest firing time of théth neuron at time,
the parameted is set close to the characteristic width of the
(D =1x0(t) (xe{0,1}), (6)  output pulse, andi=4 is used in the following. Then the

output overlapmy,, between the patter§” and the binary

wherel is the strength of the external inpug, is the binary  seriesy = (y,(t),y,(t),...,yn(t)) is defined as
factor which determines whether the input is injected to the

ith neuron or not, and(t) is Heaviside's step function N
which takes 1 foit=0 and otherwise takes 0. In the follow- n w_
m a) a 10

ing, | is fixed atl =0.1, which is so small that each neuron C Na(l a) 2 (& (vi—a). (10
cannot fire without the fluctuatiom,;(t). Using the binary
factorx;, the input overlapm(y, which measures the corre-  The firing times of all the neurons for the fluctuation in-
lation between the patterér=(¢1,£5,....6y) and the ex-  tensity D=0.001 are shown in Fig.(8), and it is observed
ternal inputl (t) = (I 1(t),15(t),....In(t)), is defined as that all the neurons are firing randomly. The output overlap

mg,. with the patterr¢ obtained from the time series in Fig.

N
!U._ —
M Na(l 2 -ati-a). ™ @
200 | .
IIl. FLUCTUATION-INDUCED MEMORY RETRIEVAL S 150 S
[«F]

Following the above configurations, numerical simula- < 100 }
tions are carried out foN =200, p=3, anda=0.5. Without 8
loss of generality, the pattedt can be defined as £ 50

. ot : . > s
N 1, 1=<i=<100 ® o] 20 40 60 80 100
§=10 otherwise ©®) time
1

and the patterng® and £2 are determined randomly follow- o8 |
ing the probability density functiofd). The external input is
derived by determining the binary factotsrandomly so that , 06
the input overlapnﬁ] with the patterr¢! takes 0.5. A typical Mout 0.4
time series ofu,(t) for the fluctuation intensityp = 0.001 is
shown in Fig. 1, where the fluctuation aroung,and the two 0.2t
firings are observed. To measure the correlation between the o : WALV L ST
pattern£* and the time series;(t) (i=1,2,...N), u;(t) is o 20 40 60 80 100
transformed into the binary serigg(t) € {0,1}. First, let us time
define the firing time of theth neuron as the time when(t) FIG. 2. The result of numerical simulatiota) The firing times

exceeds an arbitrary thresholtj and we set¢=0 in the  of all the neurons anb) the output overlapn,, with the pattern
following. Then the time serieg;(t) is transformed into the ¢£* for N=200, p=3, a=0.5, andD =0.001. All the neurons are
binary series firing randomly, so the retrieval of the pattegh fails.
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FIG. 3. The result of numerical simulatio@ The firing times

of all the neurons an¢b) the output overlapn?,, with the pattern

&L, for N=200, p=3,a=0.5, andD =0.002. The retrieval of the
pattern¢! is successful.

FIG. 4. The result of numerical simulatio@ The firing times
of all the neurons an¢b) the output overlapn?, with the pattern
&L, for N=200, p=3,a=0.5, andD=0.004. The neurons which
store 0's for patterre? fire with high firing rates due to the large
fluctuation intensity, so the output overlap is lower than the case of
2(a) is shown in Fig. ). It is observed tham? , fluctuates  p=0.002.

out
around 0, so it can be concluded that the retrieval of the
patterngll .fa||s.. larger values, that is, the memory-retrieval states are desta-
The firing times of all the neurons fob=0.002 are pjlized. So it can be concluded that the storage capagitp

shown in Fig. 8a). Itis observed that all the neurons seem toahout 0.02. For further discussions, theoretical analyses of
fire randomly at smafl, but att~40 the neurons which store the associative memoifyL6,17] are needed.

1’s for the patterr¢® start to fire periodically and synchro-
nously. And in Fig. 8), the output overla;m})utincreases to
about 0.8 at~40, so in this case the retrieval of the pattern IV. THEORETICAL ANALYSIS OF FLUCTUATION-
¢' is successful. INDUCED MEMORY RETRIEVAL

The results of the simulation fdd =0.004 are shown in A. Fluctuation-induced memory retrieval
Fig. 4. The periodic and synchronous firings are observed
again, but the neurons which store 0’s for pattétralso fire
with high firing rates due to the large fluctuation intensity, so
the output overlap is lower than the caseDpf 0.002.

In Fig. 5, the output overlam(l)ut at a sufficiently largé is
plotted against the fluctuation intensiyfor the input over-
lapm;,=0.8, 0.6, and 0.1. The other parameters are identic
with the previous cases. Fani,=0.8 and 0.6, the output
overlapmi, increases with the increase of the fluctuation
intensity D, and it decreases with the increaselobver the
optimal intensityD ,~0.0015. This phenomenon is similar to

In this section, we give a qualitative explanation for the
fluctuation-induced memory retrieval. In the following, the
system withp=1 is considered for simplicity. Let us define
the set of indices of neurons which store O0’s in the pattern
=& ,¢&5 ... &) asG#(0), and the set ahdices of neu-
fons which store 1's in the pattegt asG*(1). Theinput

aKi injected into theth neuron is written as

so-called stochastic resonance, where a weak input signal is 08
enhanced by its background fluctuation and observed in ;

many nonlinear systeni€0—24. Form,=0.1, the retrieval Moy 06
of pattern¢? fails for any value oM. 04

For the fixed fluctuation intensit{p =0.002, the numeri-
cally obtained basin of attraction is shown as a function of 02
the loading ratex=p/N in Fig. 6. For each loading rate, 0
two points are plotted, namely, the upper is the equilibrium 0 0001 0.002 0003 0.004
value of the output overlam’, and the lower is the mini- D
mum input overlapm;, which gives the successful memory  FiG. 5. The output overlam? , against the fluctuation intensity
retrieval. Fora<0.02, the standard deviations shown by theD for m}=0.8, 0.6, and 0.1 wittiN=200, p=3, anda=0.5. Sto-
error bars are relatively small, but far=0.02, they take chastic resonancelike phenomenon is observethipr 0.8 and 0.6.




2632

1

sl ¢ 0

M

04 (I)

i

U .
0 001 002 003 004
o

FIG. 6. The basin of attraction fdi=200, D=0.002, anda

=0.5. The error bar denotes the standard deviation for ten sample8.0012 withN=100 and|

The storage capacity is estimated to be about 0.02.

Ki=n forieGY0), (11)
N
Ki= Na(l 2 2 (6~ HIF 7, (12
T[S (E-auugt S (E-a)
Na(l-a)l|; Glo P S !
X(Uj—Ugg) | +1+ 7, (13
1 1
=w Ueg) + Uj—Ue
( N(1- aheg«» J Na;eém 1 ted
+14+ 7, (149
=W(—(Uj—Ueg)jecio)t(Uj—Uegjecin) +1+ 7
for i e GY(1), (19

where( );.a denotes the ensemble average over theAset

Note that the external inpu{t) is injected only to the neu-

rons in G1(1) for simplicity. Because noises for different

neurons are statistically independent, the neuroni¢0)

fire randomly and independently. On the other hand, the ne

rons inG*(1) have the common inpui(u; — Ueg); c g1(1)» SO

their firings may be correlative with each other. In the fol-

lowing, we treat this dynamics.

Let us consider an ensemble Nfneurons with the uni-
form coupling termw(u;(t—d,) — Ueg; and the external in-
put I +»;, namely, Egs.(1) and (2) with J;;=w/N and
neurons inG*(1), andthat the term(u; — Ueg)j c c1(0) in EQ.
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Note that this model approximates the dynamics of
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FIG. 7. Numerically obtaineg(z,) for D=0.0005, 0.001, and
=0.1. A saddle-node bifurcation &
~0.001 is observed.

deriveg(z,) for D#0, but it is expected to be a monotoni-
cally increasing function og,, .

Numerically obtainedg(z,) for D=0.0005, 0.001, and
0.0012 withN=100 andl=0.1 is plotted in Fig. 7. The
width A of the time interval is set at the same size wdtbf
the output pulse. It is observed that the number of intersect-
ing points ofy=g(z) with y=z is three forD<Dy~0.001
and one forD>D,, the intersecting poinz~1 is always
stable for anyD, and the other intersecting points are gener-
ated by a saddle-node bifurcation@tD,. The schematic
diagram is shown in Fig. 8. Thus, f@>D,, any z, con-
verges to the stable fixed poir{~ 1, which means that all
the neurons fire synchronously and periodically with the pe-
riod d,, for D>D,.

B. The dependence ofn,, on D

In this section, the dependence mof,; on D is investi-
gated forD>D,. Assume that the neurons i@(1) fire
synchronously and periodically with the peridg and that
the neurons inGY(0) are firing randomly with firing rate
depending oD asrgo=rgexp(—C/D), wherery andC are
constants. Note that this firing rate is the inverse of the first

assage time for a particle in a double-well potential to cross
he potential barrief36], and is introduced only for simplic-
ity.

The distribution of the ratick of the neurons inG°(0)
which fire in a time interval of widthd and its averagék) are

written as

82

(15) is neglected for simplicity. Then let us consider the
number of neurons which fire in the narrow time interval
[t,t+A] and denote it byNz,. If an output pulse of the FN
neuron has widtld and heightV, the perturbation with width
~d and height~wMz, is injected to all the neurons with
the delayd, . Let us denote the number of neurons which fire
with this perturbation in the time intervelt+d,,t+d,
+A] by Nz,. 1, and assume the relatiay, ;=9(z,). If the
FN neuron acts like a threshold device with the threshg|d
g(z,) for noise intensityD =0 is a step function which takes
1 for wMz,+1=1, and takes O otherwise. It is difficult to

Z

FIG. 8. Schematic diagram of bifurcation gfz).
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P(K) = n(1-a)Cn(1—akl 1 —exp(—rgod) N3k 200 @)
X[ exp( —rgod) NE-AAK)] (16)
S 150 |
K)y=1—exp —rgod). 17 3
(k) A~ rcod) (7 2 0l
With (k), m,,: is approximately given by 3 o
My S (Eay-a) (18) 0 ' -
ot Na(l—a) 4 ! : ' 0 40 80 120 160
1 (b) time
:m[(l—a)(l—a)Na+(—a)(1—a)N(1—a)<k) s | —méut
"""" Mout
+(—a)(—a)N(1-a)(1-(k))], (19 06 |
oy
c ‘0 |
=ex;{—r0d exp{ - 5) . (20 o2 | |
Note that Eq(20) decreases monotonically with the increase ° o 40 80 120 160
of D. This gives the quantitative description of the decrease time

of mg,; for D=Dj,.
out 0 FIG. 9. The results of numerical simulatigia) The firing times

and (b) the output overlaps, fol=200, p=3, a=0.5,D=0.001,
V. ALTERNATE RETRIEVAL OF TWO PATTERNS andd,=6.5. The retrievals of both pattegit and patterré? fail.

In our network, the memory is represented by the syn- ) ,
chronized periodic firings of the neurons which store 1's, ancPar“e‘j2 by th_e time d|fferencxdzp/2._Thej output overlapm(l)u.t
this period is determined by the propagational time delgy ~ and mg,, derived from the data in Fig. 18 are shown in
So the system has a large degree of freedom along the tinfég. 10b). The alternate retrieval of two patterns is observed
axis for the larged,, that is, during the time between the as the antiphase oscillations of two output overlaps.
firings by one pattern, the system can retrieve other patterns, The results of the numerical simulation fbr=0.004 are
in other words, this system can process some “tasks” simulshown in Fig. 11. In Fig. 1), it is observed that all the

taneously. neurons are firing with high firing rates, so the retrievals of
To see this ability, numerical simulations are performedboth patterné* and patterré® fail as in Fig. 11b).
for N=200,p=3, a=0.5, andd,= 6.5. Note that the propa- From the above results, it can be concluded that our sys-

gational time delay, is about twice as long ad,=3 used tem has an ability to retrieve two patterns simultaneously as
in the above sections. For simplicity, the patteghsand &2

are defined as 200 (é) —
1, 1<i<100 =
£l= . (21) s 1°°
0 otherwise, 2
= 100
1, 5l<i<150 g
&= . (22 E 5o
0 otherwise,
o
respectively, and the patteé is determined randomly fol-
lowing the probability density functiofd). The external in-
put I (t) is defined so that the binary factgy suffices, 1
rl, 51<i<100 23 0.8 1
X = . 0.6
0 otherwise. Mo
0.4 |
Note that both input overlaps,, andmZ,, take 0.5.
For the fluctuation intensit{d =0.001, the firing times of 0.2 n WU d
all the neurons and the output overlapg,, and m2, are o L¥ ! RUIR R

o) 40 80 120 160
time

plotted in Figs. @) and 9b), respectively. It is observed that
the retrievals of both patterét and patterr¢? fail with this
fluctuation intensity. FIG. 10. The results of numerical simulatiot®) The firing

The flrlng times of all the neurons for the fluctuation in- times and(b) the output overlaps, foN=200, p=3, a=0.5, D
tensity D=0.002 are plotted in Fig. 18). It is shown that  =0.002, andd,=6.5. The alternate retrieval of two patterns is ob-
the two patterng® and&? are retrieved alternatively, accom- served as the antiphase oscillations of two output overlaps.
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enon is similar to so-called stochastic resonai&®, where
the weak input signal is enhanced by its background fluctua-
tions. Though there is no time-dependent input in our model,
the mechanism of associative memory is driven and en-
hanced by its background fluctuations. The basin of attrac-
tion of this system is investigated numerically, and its stor-
age capacity is found to be;.~0.02. Note that this storage
capacity is smaller than those of previous models, for ex-
{ ample 0.138 for the Hopfield modgB7] and 0.038 for the
0 40 80 120 160 coupled phase oscillatof88]. But our network has an abil-
ity that the previous models do not have, that is, an ability to
retrieve two patterns as the alternate firings of the particular
neurons. While such dynamics utilizing the degree of free-
dom along the time axis is proposed by Waatgal. for the
network of bursting neurond 4], our model has the proper-
ties that the component of memory is the single pulse of each
neuron, and that fluctuation in the system is indispensable.
As for the fluctuations in the neural system, SR in a single
! neuron is often investigated, and it is proposed that the sen-
0 40 80 120 160 sory system may utilize SR in order to improve the sensitiv-
time ity to the external input. Our results show that fluctuations
can play a more functional role in higher-order dynamics in
_ FIG. 11. The results of numerical simulatiof@ The firing  the brain, such as memory retrieval in the associative
times and(b) the output overlaps, foN=200, p=3, a=0.5,D  memory. Collinset al. propose that regulation of the fluctua-
=0.004, andd,=6.5. All the neurons are firing with high firing - o, jntensity is not required for a network of large numbers
rates, so the retrievals of both pattehand patterre” fail. of neurong33]. In our dynamics, however, regulation of the
._fluctuation intensity is required for optimal intensisee Fig.
. : R ! . ) %). It might be difficult to regulate the fluctuation intensity if
intensity D plays a significant role to realize this dynamics. the fluctuation in our model is considered to be the thermal
noise in the neural system, but that might be naturally per-
VI. CONCLUSIONS AND DISCUSSION formed if the fluctuation in our system represents the sum of
enormous pulses from the presynaptic neur@®-31. In
uch a case, the dynamics of the system might be controlled
y its background fluctuation84].

200 g

150

100

index of neuron

[4)
o

M out

The associative memory in a pulsed neural network com
posed of FitzHugh-Nagumo neurons with propagational tim
delay is investigated. In this network, the memory is repre-
sented by the synchronous periodic firings of the particular
neurons. It is found that the memory retrieval in this system
is achieved by adding fluctuations, and there exists an opti- The authorT.K.) is grateful to Professor T. Horita for his
mal fluctuation intensity for memory retrieval. This phenom- stimulating discussions and encouragement.
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